从字节码的粒度来探索ELF文件
好了,下面我们继续把剩下的 36 个字节(52 - 16 = 32),也以这样的字节码含义画出来:
16 - 31 个字节:
32 - 47 个字节:
48 - 51 个字节:
具体的内容就不用再解释了,一切都在感情深、一口闷,话不多说,都在酒里~~ 哦不对,重点都在图里!
字符串表表项 Entry
在一个 ELF 文件中,存在很多字符串,例如:变量名、Section名称、链接器加入的符号等等,这些字符串的长度都是不固定的,因此用一个固定的结构来表示这些字符串,肯定是不现实的。
于是,聪明的人类就想到:把这些字符串集中起来,统一放在一起,作为一个独立的 Section 来进行管理。
在文件中的其他地方呢,如果想表示一个字符串,就在这个地方写一个数字索引:表示这个字符串位于字符串统一存储地方的某个偏移位置,经过这样的按图索骥,就可以找到这个具体的字符串了。
比如说啊,下面这个空间中存储了所有的字符串:
在程序的其他地方,如果想引用字符串 “hello,world!”,那么就只需要在那个地方标明数字 13 就可以了,表示:这个字符串从偏移 13 个字节处开始。
那么现在,咱们再回到这个 main 文件中的字符串表,
在 ELF header 的最后 2 个字节是 0x1C 0x00,它对应结构体中的成员 e_shstrndx,意思是这个 ELF 文件中,字符串表是一个普通的 Section,在这个 Section 中,存储了 ELF 文件中使用到的所有的字符串。
既然是一个 Section,那么在 Section header table 中,就一定有一个表项 Entry 来描述它,那么是哪一个表项呢?
这就是 0x1C 0x00 这个表项,也就是第 28 个表项。
这里,我们还可以用指令 readelf -S main 来看一下这个 ELF 文件中所有的 Section 信息:
其中的第 28 个 Section,描述的正是字符串表 Section:
可以看出来:这个 Section 在 ELF 文件中的偏移地址是 0x0016ed,长度是 0x00010a 个字节。
下面,我们从 ELF header 的二进制数据中,来推断这信息。
读取字符串表 Section 的内容
那我就来演示一下:如何通过 ELF header 中提供的信息,把字符串表这个 Section 给找出来,然后把它的字节码打印出来给各位看官瞧瞧。
要想打印字符串表 Section 的内容,就必须知道这个 Section 在 ELF 文件中的偏移地址。
要想知道偏移地址,只能从 Section head table 中第 28 个表项描述信息中获取。
要想知道第 28 个表项的地址,就必须知道 Section head table 在 ELF 文件中的开始地址,以及每一个表项的大小。
正好最后这 2 个需求信息,在 ELF header 中都告诉我们了,因此我们倒着推算,就一定能成功。
ELF header 中的第 32 到 35 字节内容是:F8 17 00 00(注意这里的字节序,低位在前),表示的就是 Section head table 在 ELF 文件中的开始地址(e_shoff)。
0x000017F8 = 6136,也就是说 Section head table 的开始地址位于 ELF 文件的第 6136 个字节处。
知道了开始地址,再来算一下第 28 个表项 Entry 的地址。
ELF header 中的第 46、47 字节内容是:28 00,表示每个表项的长度是 0x0028 = 40 个字节。
注意这里的计算都是从 0 开始的,因此第 28 个表项的开始地址就是:6136 + 28 * 40 = 7256,也就是说用来描述字符串表这个 Section 的表项,位于 ELF 文件的 7256 字节的位置。
既然知道了这个表项 Entry 的地址,那么就扒开来看一下其中的二进制内容:
执行指令:od -Ad -t x1 -j 7256 -N 40 main。
其中的 -j 7256 选项,表示跳过前面的 7256 个字节,也就是我们从 main 这个 ELF 文件的 7256 字节处开始读取,一共读 40 个字节。
这 40 个字节的内容,就对应了 Elf32_Shdr 结构体中的每个成员变量:
这里主要关注一下上图中标注出来的 4 个字段:
sh_name: 暂时不告诉你,马上就解释到了;
sh_type:表示这个 Section 的类型,3 表示这是一个 string table;
sh_offset: 表示这个 Section,在 ELF 文件中的偏移量。0x000016ed = 5869,意思是字符串表这个 Section 的内容,从 ELF 文件的 5869 个字节处开始;
sh_size:表示这个 Section 的长度。0x0000010a = 266 个字节,意思是字符串表这个 Section 的内容,一共有 266 个字节。
还记得刚才我们使用 readelf 工具,读取到字符串表 Section 在 ELF 文件中的偏移地址是 0x0016ed,长度是 0x00010a 个字节吗?
与我们这里的推断是完全一致的!
既然知道了字符串表这个 Section 在 ELF 文件中的偏移量以及长度,那么就可以把它的字节码内容读取出来。
执行指令: od -Ad -t c -j 5869 -N 266 main,所有这些参数应该不用再解释了吧?!
看一看,瞧一瞧,是不是这个 Section 中存储的全部是字符串?
刚才没有解释 sh_name 这个字段,它表示字符串表这个 Section 本身的名字,既然是名字,那一定是个字符串。
但是这个字符串不是直接存储在这里的,而是存储了一个索引,索引值是 0x00000011,也就是十进制数值 17。
现在我们来数一下字符串表 Section 内容中,第 17 个字节开始的地方,存储的是什么?
不要偷懒,数一下,是不是看到了:“.shstrtab” 这个字符串(是字符串的分隔符)?!
好了,如果看到这里,你全部都能看懂,那么关于字符串表这部分的内容,说明你已经完全理解了,给你一百个赞!!!
读取代码段的内容
从下面的这张图(指令:readelf -S main):
可以看到代码段是位于第 14 个表项中,加载(虚拟)地址是 0x08048470,它位于 ELF 文件中的偏移量是 0x000470,长度是 0x0001b2 个字节。
那我们就来试着读一下其中的内容。
首先计算这个表项 Entry 的地址:6136 + 14 * 40 = 6696。
然后读取这个表项 Entry,读取指令是 od -Ad -t x1 -j 6696 -N 40 main:
同样的,我们也只关心下面这 5 个字段内容:
sh_name: 这回应该清楚了,表示代码段的名称在字符串表 Section 中的偏移位置。0x9B = 155 字节,也就是在字符串表 Section 的第 155 字节处,存储的就是代码段的名字。回过头去找一下,看一下是不是字符串 “.text”;
sh_type:表示这个 Section 的类型,1(SHT_PROGBITS) 表示这是代码;
sh_addr:表示这个 Section 加载的虚拟地址是 0x08048470,这个值与 ELF header 中的 e_entry 字段的值是相同的;
sh_offset: 表示这个 Section,在 ELF 文件中的偏移量。0x00000470 = 1136,意思是这个 Section 的内容,从 ELF 文件的 1136 个字节处开始;
sh_size:表示这个 Section 的长度。0x000001b2 = 434 个字节,意思是代码段一共有 434 个字节。
以上这些分析结构,与指令 readelf -S main 读取出来的完全一样!
PS: 在查看字符串表 Section 中的字符串时,不要告诉我,你真的是从 0 开始数到 155 啊!可以计算一下:字符串表的开始地址是 5869(十进制),加上 155,结果就是 6024,所以从 6024 开始的地方,就是代码段的名称,也就是 “.text”。
知道了以上这些信息,我们就可以读取代码段的字节码了.使用指令:od -Ad -t x1 -j 1136 -N 434 main 即可。
内容全部是黑乎乎的的字节码,我就不贴出来了。
Program header
文章的开头,我就介绍了:我是一个通用的文件结构,链接器和加载器在看待我的时候,眼光是不同的。
为了对 Program header 有更感性的认识,我还是先用 readelf 这个工具来从总体上看一下 main 文件中的所有段信息。
执行指令:readelf -l main,得到下面这张图:
显示的信息已经很明白了:
这是一个可执行程序;
入口地址是 0x8048470;
一共有 9 个 Program header,是从 ELF 文件的 52 个偏移地址开始的;
布局如下图所示:
开头我还告诉过你:Section 与 Segment 本质上是一样的,可以理解为:一个 Secgment 由一个或多个 Sections 组成。
从上图中可以看到,第 2 个 program header 这个段,由那么多的 Section 组成,这下更明白一些了吧?!
从图中还可以看到,一共有 2 个 LOAD 类型的段:
我们来读取第一个 LOAD 类型的段,当然还是扒开其中的二进制字节码。
第一步的工作是,计算这个段表项的地址信息。
从 ELF header 中得知如下信息:
字段 e_phoff :Program header table 位于 ELF 文件偏移 52 个字节的地方。
字段 e_phentsize: 每一个表项的长度是 32 个字节;
字段 e_phnum: 一共有 9 个表项 Entry;
通过计算,得到可读、可执行的 LOAD 段,位于偏移量 116 字节处。
执行读取指令:od -Ad -t x1 -j 116 -N 32 main:
按照上面的惯例,我还是把其中几个需要关注的字段,与数据结构中的成员变量进行关联一下:
p_type: 段的类型,1: 表示这个段需要加载到内存中;
p_offset: 段在 ELF 文件中的偏移地址,这里值为 0,表示这个段从 ELF 文件的头部开始;
p_vaddr:段加载到内存中的虚拟地址 0x08048000;
p_paddr:段加载的物理地址,与虚拟地址相同;
p_filesz: 这个段在 ELF 文件中,占据的字节数,0x0744 = 1860 个字节;
p_memsz:这个段加载到内存中,需要占据的字节数,0x0744= 1860 个字节。注意:有些段是不需要加载到内存中的;
经过上述分析,我们就知道:从 ELF 文件的第 1 到 第 1860 个字节,都是属于这个 LOAD 段的内容。
在被执行时,这个段需要被加载到内存中虚拟地址为 0x08048000 这个地方,从这里开始,又是一个全新的故事了。
再回顾一下
到这里,我已经像洋葱一样,把自己的层层外衣都扒开,让你看到最细的颗粒度了,这下子,您是否对我有足够的了解了呢?
其实只要抓住下面 2 个重点即可:
ELF header 描述了文件的总体信息,以及两个 table 的相关信息(偏移地址,表项个数,表项长度);
每一个 table 中,包括很多个表项 Entry,每一个表项都描述了一个 Section/Segment 的具体信息。
链接器和加载器也都是按照这样的原理来解析 ELF 文件的,明白了这些道理,后面在学习具体的链接、加载过程时,就不会迷路啦!
图片新闻
最新活动更多
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
精彩回顾立即查看>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
精彩回顾立即查看>> STM32全球线上峰会
-
精彩回顾立即查看>> 松下新能源中国布局:锂一次电池新品介绍
-
精彩回顾立即查看>> 2024工程师系列—工业电子技术在线会议
-
精彩回顾立即查看>> 【线下论坛】华邦电子与莱迪思联合技术论坛
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论