现场可编程逻辑门阵列(FPGA)赋能下一代通信和网络解决方案
不断变化的网络技术格局
对由高带宽连接提供的先进服务的需求正在重塑通信和网络领域。数据中心、边缘系统和接入设备中的新型应用正在推动对传输海量数据的需求,但同时又要满足严格的延迟要求。FPGA正在成为所有实际网络的核心,如下面的图4所示。
图4:各种实际网络中的FPGA
例如,为了支持诸如增强现实和机器人控制等应用,与之前的蜂窝无线通信技术相比,5G基站及其背后的网络设备必须保证极低的延迟。这项要求同时还与对更高的每用户吞吐量需求相伴而来,因而它们利用了多种不同的技术,包括多天线、波束成形以及作为网络密集化进程的一部分而增加使用的小基站。所有这些因素都导致了在集中式基带单元中进行更密集的处理,这些基带单元通过光纤链路与多个远程射频单元进行协同。
智能网卡(SmartNIC)的兴起
运营商已经采用了诸如软件驱动网络(SDN)和网络功能虚拟化(NFV)等技术来提高其系统的响应能力。为了运行这些服务,数据中心所有者正在为其服务器添加智能网卡(SmartNIC),以便将许多网络功能有效地卸载到加速器上。
智能网卡能够处理传入和传出服务器的大部分数据流,只有在需要处理异常情况时,才会请求核心服务器上的处理器来提供帮助。借助足够的加速功能,此类智能网卡能够以线速度执行一系列服务。这些服务范围从对传输中的数据进行压缩到详细的数据流控制,再到能够检测异常和可能的安全漏洞的深度数据包检查应用。随着智能网卡技术的成熟,正在考虑引入诸如机器学习等越来越先进的功能,以最大程度地发挥数据流和数据包分析的潜力。下面的图5显示了智能网卡的一些功能。
图5:智能网卡功能原理图
对传输高速数据和快速响应不断变化的条件的需求,要求系统能够同时处理高吞吐量和低延迟。在传统的架构中,很难同时满足这两个要求。现在,基于微处理器的架构集成了高度并行化的流水线,能够处理高带宽数据。但由于需要不断地将数据从复杂的内存体系结构中传入和传出,结果使得确保低延迟变得极其困难。即使借助于专用的卸载处理器,智能网卡也面临着由不断增加的数据速率和延迟要求所带来的挑战。
应对智能网卡设计的挑战
在传统的FPGA架构中,用户需要设计电路来连接加速器,从而导致不理想的布局和布线。更新的FPGA架构使用了一种网络,在逻辑阵列内的处理单元与各种片上高速接口和内存端口之间传输数据(如下面的图6所示)。
图6:在传统的FPGA架构中连接加速器
Status Control: 状态控制
Parameters: 参数
Accelerator: 加速器
Address decode and routing: 地址解码和布线
Back pressure: 背压
Request arbitration: 请求仲裁
Response arbitration: 响应仲裁
Response back pressure: 响应背压
Response routing: 响应布线
图7:先进的FPGA减少了所需电路的数量
硬连线架构极大地改善了处理的延迟和能效,但是缺乏应对需求变化的灵活性。对于数据压缩和加密等应用,数据中心运营商希望能够接纳算法的改进,并更加容易地应对不断变化的威胁态势。对加速器进行(重新)编程以适应这些变化的能力是一个关键的需求。一种能够实现这种重新编程的方法是通过部分重新配置,利用内置的地址转换表来简化实现(如下面的图8所示)。
图8:Speedster7t器件中的地址转换表
图片新闻
最新活动更多
-
即日-12.5立即观看>> 松下新能源中国布局:锂一次电池新品介绍
-
12月12日火热报名中>>> STM32全球线上峰会
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
精彩回顾立即查看>> 2024工程师系列—工业电子技术在线会议
-
精彩回顾立即查看>> 【线下论坛】华邦电子与莱迪思联合技术论坛
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论