侵权投诉
订阅
纠错
加入自媒体

除了深度学习 你还应该关注这6大AI领域

2017-01-26 09:50
冷血の爱
关注

除了深度学习,你还应该关注这6大AI领域

提炼出一个能被普遍接受的适合于人工智能(AI)的定义已经成为最近多次的话题之争。一些人把AI重新贴上“认知计算”或者“机器智能”的标签,而有的则不恰当地将AI和“机器学习”混为一谈。这部分是因为AI不是一种技术。实际上它是包含了从机器人到机器学习等许多学科的一个广泛领域。我们大多数人断言,AI的终极目标是开发出能执行以往属于人类智能范畴的任务以及认知功能的机器。为了实现这一点,机器必须能自动学习这些能力而不是对每一台机器进行端到端的显式编程。

从无人车到语音识别与合成,过去10年AI领域取得的进展之多令人赞叹。在此背景下,AI已经成为越来越多公司与家庭的讨论话题,他们认为AI作为一项技术不再需要20年的时间才能到来,而是认为这个东西现在已经在影响着自己的生活。的确,热门媒体几乎每天都会报道AI,而技术巨头都在接二连三地阐述自己重大的长期AI战略。尽管若干投资者和既有企业渴望理解如何在这个新世界中捕捉价值,但绝大部分还在抓破脑袋想搞清楚这一切到底意味着什么。与此同时,政府正在与社会自动化的潜在影响作斗争(参见奥巴马的告别演说)。

考虑到AI会影响到整个经济,这场对话的参与者代表了开发或使用AI系统的各种意图,不同的理解水平以及不同经验程度。同样地,一场有关AI的讨论,包括问题,以及据此获得的结论和建议等,这些东西应该以数据和事实而不是猜测为基础,这一点是至关重要的。发表的研究、技术新闻公告、推测性的评论以及思想实验把结果的潜在影响疯狂地外推实在是太容易了(有时候是太令人兴奋了!)。

以下是AI在对未来数字化产品和服务潜在影响能力方面尤其值得注意的6个领域。我将描述它们分别是什么,为什么重要,目前是如何应用的,同时还将提供攻关这些技术的公司和研究者的清单(但绝对不是详尽的)。

1、强化学习(RL)

强化学习是一种通过试错法学习的范式,其灵感源自人类学习新任务的方式。在典型的强化学习设定里面,一个代理会承担在数字化环境中观察其当前状态的任务,并采取能让自己被设定的累计长期奖励最大化的动作。作为每次动作的结果,代理从环境接收反馈,这样它就可以知道动作是促进还是妨碍了自己的进展。一个RL代理因此必须在对环境进行探索以找到累积奖励的优化策略与探索实现所要达到目标的最佳策略之间做出权衡。这种办法因为Google DeepMind在玩Atari和围棋(Alphago)游戏中的表现而变得流行。RL在现实世界的一个例子是Google数据中心在优化制冷效率当中的应用。Google的RL系统取得了将制冷成本降低40%的效果。在可模拟的环境(比如视频游戏)中采用RL代理的一个重要的天然优势是训练数据是可以生成的且成本极低。这与有监督的深度学习形成了鲜明对比,后者往往需要昂贵且在现实世界中很难获得的训练数据。

应用:多个代理以共同的模型在环境中以自己的实例进行学习,或者通过在相同环境下进行互动和相互学习,学习在像迷宫或者城市街道那样的3D环境下为无人车进行导航,运用逆向强化学习通过学习某个人物的目标来概括观察到的行为(比如学习驾驶或者赋予非玩家视频游戏角色以类似人类的行为)。

主要研究人员:Pieter Abbeel (OpenAI),David Silver,Nando de Freitas,Raia Hadsell,Marc Bellemare (Google DeepMind),Carl Rasmussen (剑桥大学),Rich Sutton (Alberta),John Shawe-Taylor (伦敦大学学院)等。

公司:Google DeepMind,Prowler.io,Osaro,MicroPSI,Maluuba/微软,NVIDIA,Mobileye。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号