侵权投诉
订阅
纠错
加入自媒体

把握大数据流行趋势与应用 助力城市发展

2015-05-31 01:26
潇纵
关注

  IDC预计,2015-2020中国GDP年均增长仍然可以达到6.5%左右,2020年GDP将达到17.5万亿美元,占到全球的17%,接近西欧的水平,稳居全球第2位。中国ICT市场也将稳步成长,预计到2020年,中国IT与电信服务市场将双双达到3000亿美元,2013-2020年的年均增长达到7.0%,2013-2020ICT市场累计总量规模达到3.8万亿美元。

把握大数据流行趋势与应用 助力城市发展

  未来,以大数据应用为主的五大趋势将成为主流。1)中国整体IT市场低速增长将成为新常态,但细分领域依然商机巨大,特别是第3平台及大数据相关领域。2)“互联网+”概念的普及将大幅提高企业效率、营销能力、产品与服务质量,并促进创新,大数据的应用将成为互联网+的助推器。3)“大企业面临的挑战越来越大,平台、服务、整合、国际化、创业是发展方向,数据整合与集中将会先行,这将给IT厂商带来巨大商机。4)跨界、融合、新的生态系统将不断涌现,数据即服务成为新的商业模式。5)基于巨大人口红利的大数据将在智慧城市物联网领域发挥巨大作用,也将产生巨大商机。

  了解大数据才能有效运用

  在真正使用大数据前,我们先来了解大数据。相较于传统数据,大数据至少具有三个差异极大的特性。首先是数据量(Volume),如果换算成数位数据单位,基本单位通常已经是TB、PB等级,不但要考量收集及储存成本,如何迅速传递这么庞大的数据,也是大数据应用必须思考的重点;其次是时效性(Velocity),即使是这么大的数据量,仍然要在最短的时间内产生分析结果,如传统的年报统计,往往是在今年收集去年的数据,却在隔年才出版,旷日废时的结果,往往会让数据分析结果失真。

  PredPol应用大数据分析技术,预测出犯罪机率高甚至下一次可能发生犯罪情况的区域,并于地图上标示出一块块500平方英尺的区域,供警察参考。

  最后也是最大的差别,就是数据的多样性(Variety),传统的数据通常有明确的结构性,选项也比较少,如年龄、性别、等级等,但大数据可能会有各种形式,包括文字、影音、图像、网页等,不但没有明显的结构,而且大数据还常常出现形式交错的现象,如Youtube上的影片除了有点击数外,同时还有留言讨论。

  由此可知,传统的数据收集方式,显然已经不能满足城市安防对于大数据的需求,所幸在物联网(Internetof Things;IoT)、云端运算及4G无线宽频等技术的发展下,要取得物与物、物与人、人与人的互联互通数据,技术上已不是问题,但必须得先迅速建构起收集、传递及储存大数据的基础建设,才有可能建立全面感知的能力,成为城市安防决策的最佳后盾。

  但只是从感知层获取资讯是不够的,因为想要做好大数据深度分析,就必须要有能力针对复杂且开放式的问题寻找答案,并藉由视觉化分析工具,透过连续性的筛选和抽象化,才能洞悉重要资讯。然而大数据具有的超大量半结构化/非结构化数据的特性,往往会造成传统关联式数据库管理系统(RDBMS)的运作瓶颈,必须要导入全新的大数据分析工具,方能真正灵活运用大数据。

  此外,大数据的价值既然远超过传统数据,大数据的真实、安全及稳定性,就必须加以重视。尤其是现在的网路应用无所不在,举凡机场、银行、捷运、车站、水电油气供应机制等,都可能被骇客入侵,加上政府为了能让掌握的数据更有价值,必须要采取公开透明的数据使用机制,当公共事业的数据开放愈多,可能被入侵的机会也愈高,因此想要利用大数据来解决城市安防的问题,首先就得先做好大数据的保护,因此资安技术的导入及专业人员的配置,绝对不能轻忽。

  大数据对城市公共卫生及治安的帮助

  目前已有许多欧美城市开始藉由蒐集及分析大量数据、预知可能出现的危机,进而作为城市安防的参考。如纽约的康乃尔大学威尔医学院(Weill Cornell Medical College)计算与系统生物医学助理教授Christopher E.Mason的研究团队,花了18个月的时间在纽约400多个地铁站的车厢、楼梯扶手、座椅、灯杆、垃圾桶等地方蒐集样本,总共发现15,152种微生物,其中来自于人类的DNA只占0.2%,将近一半的样本是人类未知的有机生物,27%是活性且具有抗生素抗药性的细菌,所幸其中仅有12%会让人生病。

  这项名为Phtho Map的研究计划,还透过华尔街日报网站提供互动地图,让使用者可以用来观看特定车站的研究成果,如收集的样本来源、微生物来源比例、细菌种类与说明等,也可利用搜寻细菌的种类,了解那些车站有这些细菌的存在,等于也展示了公卫数据开放使用的过程。

  有趣的是,在研究过程中也发现在某些地铁站找到的DNA,与其周围的人口状况相符合,这些都是过去从来没有想过的资讯,未来若能将以分门别类,并且深入研究,对于城市公共卫生的防护工作,将会有莫大的助益。

  洛杉矶警局则是导入预测性警务软体“PredPol”,用来预测可能发生犯罪情况的地点。据PredPol(名称取自“预测监控”Predictive Policing)团队指出,该公司先是蒐集过去10年的公开犯罪统计数据,以及从大量的新闻中蒐集犯罪的发生状况及时间,可预测的犯罪行为除了自杀外,还包括枪杀、闯空门、窃盗、窃车等,再根据前述数据中的犯罪行为模式,开发出独特的运算系统,再将犯罪机率高甚至下一次可能发生犯罪情况的区域,于地图上标示出一块块500平方英尺的区域,供警察参考,就是典型的将传统数据变成大数据加以运用的范例。

  事实上,许多城市的治安单位早已拥有累积数十年的犯罪记录数据档,甚至早己针对犯罪可能性较高的区域或场所加强巡逻。但Pred Pol利用大数据分析技术,从容易滋养犯罪事件的场所(如曾经发生斗殴事件的酒吧)、多次受害地区(如屡遭窃贼闯空门的社区)及受害地区的邻近地区,计算出10至20个最有可能发生犯罪的地点。PredPol宣称,警察只要在地图标明的区域,只需要花过去巡逻时间的5%至15%,就能够阻止更多犯罪活动。

  目前全美共有将近60间警局使用Predpol,其中规模最大的是洛杉矶警局和亚特兰大警局。其中加州Santa Cruz闯空门的窃盗案在系统建置第一年就下降了11%、抢劫案更减少了27%。洛杉矶Foothill区在2011年导入PredPol后,4个月后的犯罪率就降低了13%,反观没有导入PredPol的区域,还微幅增加了0.4%。

  在2012年一项针对美国近200所警局的研究指出,有70%的警局计划在未来2至5年开始或增加使用类似PredPol的预测性警务技术,包括IBM、Palantir及Motorola也开始涉足相关领域。

  虽然将大数据分析技术应用在犯罪治安方面,还不是百分之百的准确,经验丰富的警察可能也不见得需要预测性警务技术,但对于新进的警务人员而言,预测性警务技术可以帮助他们及早进入状况,尤其在城市预算吃紧之际,人力又相对缺乏的情况下,运用大数据显然可以提升城市安防的工作效率。

  更多数据关联产生更多的价值

  城市安防建设至今,影像监控的重要性也日渐提升,但庞大的影像数据要如何分析,却也成为城市治理者的一大难题。所幸大数据技术,正可以针对影像这种非结构性数据加以分析,让视讯监控数据得以有效利用。

  大数据可说是智慧城市运作的基础,除了城市安防,其他如智慧交通、智慧医疗等应用,也都需要以大数据为基础,而这些不同类型的数据产生更多的关联,自然也需要更深入的数据分析能力,如智慧交通与智慧安防相结合,可以指引警消人员在最短的时间内赶到事故现场,更可看出大数据在城市安防的应用潜力。

声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号