侵权投诉
订阅
纠错
加入自媒体

全球力挺智能工厂 成败在大数据分析

2015-04-03 08:46
PokerJoker
关注

  换句话说,工业4.0最终其达成的目标即是智能制造,而此目标体现在建构智能工厂。智能二字是建立在机器可以通讯、运算、分析进而移动之上,如同人能与外界沟通、思考、分析进而下决策并有所移动。

  在智能工厂里,所有工具机台和机器人均为智能机器,意即,机器与机器之间能透过通讯架构彼此沟通,并透过机器专用应用平台串联机台,成为虚实合一制造系统(Cyber-Physical System;CPS)。

  而机器运转中产生的大数据皆上传至安全云端网络,由分析引擎找出关键资讯,进行预兆通知、事前维护等。此外,不同厂房之间也具备沟通协调能力。分析认为,“整合”是智能工厂内涵最重要的词汇。

  智能工厂所创造的不但是应运而生的全新生产流程,更垂直整合工厂管理和企业管理流程,水平整合价值链,实现产品及其生产系统的生命周期管理,可确保有效运用能源、掌握产品上市时间和确保产出品质,提升生产效率和能源应用效率,最终可达成永续制造。

  后端大数据分析是成败最后一里

  工研院南分院云端服务中心主任程瑞曦则强调,物联网、云端运算和大数据三者宛如兄弟,缺一则无法形成应用,智能工厂也将功亏一篑。

  针对大数据的特性,程瑞曦指出,相较于从前习惯的抽样资料,大数据具有样本等同于母体、资料数量重于资料品质、资料相关性先于因果关系三大特点。

  由于从前是抽样,母体和样本有差距,样本的品质也显得格外重要,否则容易出现偏差;但在大数据时代,当数量已等同于样本,由于所有的可能性都已经涵盖其中,反而没有品质问题。

  此外,在运用大数据时,必须摆脱从前事事寻求因果关系的旧思维,而应将重点放在资料所显现出的观点或趋势;背后的原因不再重要,重要的是抓到趋势后可用于创造效益。

  至于智能工厂中大数据的应用方向,程瑞曦认为有五大方向:探知、诊断、控管、预测以及视觉化,可能用来改善品质、降低成本、缩短工时、提高产量等。

  而在应用之前,则必须根据目的慎选主题以决定资料搜集的范围,接着以e化方式搜集,避免人为影响,而且必须由业者或领域专家亲自检视欲运用的资料成分并与ICT人员讨论,才能确保资料正确性,达到解决问题的目的。

  不过,工研院机械座智能系统技术组组长钟裕亮指出,台湾制造业除了半导体业,一般而言在ICT方面大概落后德国10~20年。

  且在工厂智能化之前,机器先得智能化;而在机器智能化之前,零组件要先智能化,能够自我监测健康状态,透过无线射频等方式回传资料。这一连串过程中处处是需求,也代表许多ICT业者可投入的缺口,商机处处。

<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号