侵权投诉
订阅
纠错
加入自媒体

关于大数据治理的研究与分析

2014-11-11 10:13
汉水狂客
关注

  2.2数据治理策略

  第一步:落实合适的人员负责治理。

  任何成功的数据治理计划的第一个步骤就是,要在本企业找到CEO可以授权的人,然后让该人负责项目的具体实施。没有什么能取代强有力的领导人。

  数据治理是涉及人事的一个难题,这需要在许多不同的利益相关者之间达成共识。因而,在本企业里面选定这样的领导人是一项重要工作。治理官员一旦选定下来,就要成立由企业的利益相关者组成的治理委员会,制订监管政策、向CEO及董事会报告进度。

  第二步:调查清楚所处环境。

  一旦选定了领导小组,就要调查当前情形,并清查不同部门在不同领域的当前最佳实践。领导小组需要越过独立系统看待问题,而企业数据治理评估方法对这项工作来说必不可少。这有助于比较本企业的数据治理计划目前处于什么状态,并且提供了一份路线图以便确定以后的目标。

  第三步:制订数据治理策略。

  数据治理评估之后,治理委员会就应当考虑制订远景,希望公司的数据治理实践在接下来的几年达到何种目标,根据这种需求为未来制订远景。委员会应当向后规划,并且制订切合实际的里程碑和项目计划来填补相关的缺口。具体办法就是制订关键绩效指标来跟踪进度,并且向CEO和董事会提交年度报告来证实成果。

  第四步:算出数据价值。

  估算数据价值。要是公司不知道数据的价值,它们就无法提高、保护或者评估数据对账本底线的价值。数据不是一种普通商品,而是像水龙头里出来的水--对生命至关重要,又往往被人们认为是理所当然的。你要是不知道某物的价格,就无法算出它的价值。

  如果你想算出数据的价值,就要根据用户权限和IT服务的效用,为数据建立内部市场。当本企业的每个人都在直接付费获取IT服务和数据时,数据的价值就成了公司价目表上的一部分。

  第五步:算出风险概率。

  知道数据在过去是如何使用和滥用的,这有助于了解数据在将来会如何被危及和披露。每家企业都有一些原因,如一些事件和损失在独立系统、层次体系和商业报告中消失。这些数据已经可供使用,却没有被大多数企业所使用。收集这些数据,与其意义联系起来,并研究长期的损失趋势,这可以帮助任何企业把风险管理转变成基于事实的商业智能方法,从而可分析过去事件,预测未来损失,改变当前的政策要求,成为未来改善风险缓解策略。

  第六步:密切关注控制措施的效果。

  数据治理在很大程度上涉及企业的组织行为。企业每天在变化,因而它们的数据、价值及风险也在迅速变化。遗憾的是,大多数企业每年对自己只评估一次。要是公司无法改变组织控制措施来满足每天或者每周出现的需求,也就谈不上变化治理。

 图4 数据治理实施建议图

  3.元数据管理

  3.1元数据的定义

  技术元数据是存储关于数据仓库系统技术细节的数据,是用于开发和管理数据仓库使用的数据,它主要包括以下信息:数据仓库结构的描述,包括仓库模式、视图、维、层次结构和导出数据的定义,以及数据集市的位置和内容;业务系统、数据仓库和数据集市的体系结构和模式;

  业务元数据从业务角度描述了数据仓库中的数据,它提供了介于使用者和实际系统之间的语义层,使得不懂计算机技术的业务人员也能够"读懂"数据仓库中的数据。业务元数据主要包括以下信息:使用者的业务术语所表达的数据模型、对象名和属性名;访问数据的原则和数据的来源;系统所提供的分析方法以及公式和报表的信息;具体包括以下信息:企业概念模型:这是业务元数据所应提供的重要的信息,它表示企业数据模型的高层信息、整个企业的业务概念和相互关系。

  3.2为什么要进行元数据管理

  图5 数据管理分析图

  3.3数据模型标准化

  图6 数据模型示意图

<上一页  1  2  3  4  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号